Iins Indurtrics
 Single Wall Round Catalog

Table of Contents

Diagram Nomenclature .4
Nomenclature Definitions 5
Linx Safe Connection 6
Duct System Leakage Classification 7
Linx Safe Assembly Instructions 8
Conversion Chart: Rectangular to Round 9
Specification 10
Tolerance, Gauge, e-dimension \& Fittings Slip Dimension 11
Spiral Duct
Corrugated/Non-corrugated-SC/SN 12
Elbows
$90^{\circ} 1.5^{\prime \prime}$ Radius Elbow - E 90 13
$90^{\circ} 1.0^{\prime \prime}$ Radius Elbow - ER 90 14
$60^{\circ} 1.0^{\prime \prime}$ Radius Elbow - ER 60 15
$45^{\circ} 1.5^{\prime \prime}$ Radius Elbow - E 45 16
$45^{\circ} 1.0^{\prime \prime}$ Radius Elbow - ER 45 17
$30^{\circ} 1.0^{\prime \prime}$ Radius Elbow - ER 30 18
$15^{\circ} 1.0^{\prime \prime}$ Radius Elbow - ER 15 19
Mitered Elbow - BM. 20
Mitered Elbow w/Vanes - BMV 20
Reducers
Concentric Reducers - RC/RCF 21
Fabricated Concentric Reducers - RC/RCF 22
Fabricated Eccentric Reducers - RE/REF 23
Taps
45° Boot-Style Tap - PBF/PB 24
Pressed or Fabricated Saddle Tap - PS 25
45° Lateral or Conical Saddle Tap for Round - PV45/PC 26
45° Lateral or Conical Saddle Tap for Flat - PVF45/PCF 27
Tees/Crossing Tees
Bullhead Tee - TBH/TRBH 28
45° Boot-Style Tee - TB/TRB 29
45° Boot-Style Crossing Tee - XB/XRB 30
Conical Tee - TC/TRC 31
Conical Crossing Tee - XC/XRC 32
Assembled Tee - TS/TRS 33
Assembled Crossing Tee - XS/XRS 34
45° Lateral Tee - TV45/TRV45 35
45° Lateral Crossing Tee - XV45/XRV45 36
Y-Branch
45° Directional Split Fitting - Y45 37
Offsets
One-Piece Offset - Z 38
Couplings
Coupler - CD/CF 39
End Caps
End Cap - ED/EF 40
Take-Offs
Flat or Bellmouth Take-Off - PT/PR 41
Dampers
Manual Balancing Damper - DS/DSW 42
Gasketed Flat or Bellmouth Damper - DPT/DPR 43
Damper with Saddle Tap - DSPS 44
Balancing Damper with Complete Air Shut Off - DT 45
Square to Round
Square to Round Transition-RRT. 46

Nomenclature Definitions

Nominal inside diameter (duct size) $\varnothing D$

Nominal outside diameter (fitting size).................... Ød1, Ød2, Ød3, Ød4
Material thickness (gauge) t

Installed height H

Center line radius.. r_{c}
Installed length \qquad L

Fitting slip dimension .. e

All measurements in inches (in or ") unless otherwise noted
All angles in degrees $\left({ }^{\circ}\right)$

Linx Smart Part

Nomenclature / Abbreviations

PRODUCT	Designation And Description	PRODUCT	Designation And Description
DUCT	SC = Corrugated Single Wall Round Spiral Duct SN - Noncorrugated Single Wall Round Spiral Duct	ELBOWS	E = 1.5 Radius Elbow Stamped Or With 3-5 Gores $E R=1.0$ Radius Elbow Stamped Or With 3-4 Gores
REDUCERS	RC = Reducer Concentric Male RCF = Reducer Concentric Female RE = Reducer Ecentric Male REF = Reducer Ecentric Female	END CAPS	$\begin{array}{\|l\|} \hline \mathrm{ED}=\text { End Duct } \\ \mathrm{EF}=\text { End Fitting } \end{array}$
COUPLINGS	CD = Coupling Duct CF = Coupling Fitting	TAKE-OFFS	PT = Straight Take Off PR = Radius Take Off
TEES	TBH = Bull Head Tee TRBH = Reducing Bull Head Tee TB = Tee With Boot Tap TRB = Reducing Tee With Boot Tap TC = Tee With Conical Tap TRC = Reducing Tee With Conical Tap TS = Straight Tee TRS = Reducing Straight Tee	CROSSING TEES	$\mathrm{XB}=$ Boot Style Crossing Tee XRB = Reducing Boot Style Crossing Tee XC = Conical Crossing Tee XRC = Reducing Conical Crossing Tee XS = Crossing Tee XRS = Reducing Crossing Tee XV = Lateral Crossing Tee XRV = Reducing Lateral Crossing Tee
LATERAL TEES	TV = Tee With Lateral Tap TRV = Reducing Tee With Lateral Tap	Y-BRANCH	$\mathrm{Y}=\mathrm{Y}$ Branch
TAPS	$\begin{aligned} & \text { PB = Boot Tap } \\ & \text { PBF = Boot Tap Flat } \\ & \text { PS = Press Tap } \\ & \text { PV = Lateral Tap } \\ & \text { PVF = Lateral Tap Flat } \\ & \text { PC = Conical Tap } \\ & \text { PCF = Conical Tap Flat } \end{aligned}$	DAMPERS	DS = Damper DT = Damper DSIL = Combination Damper with Take-Off DSILR = Combination Damper with Take-Off DSPS = Combination Damper with Saddle Tap

Linx Safe Connection

6

Benefits of the Linx Safe Duct System

- A complete line of self-sealing spiral duct and fittings
- Factory installed gasket - no loose parts
- Fast and easy installation
- Environmentally friendly, no harmful sealers required
- Installation not contingent on weather
- Performance rated from $-20^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
- Double lipped gasket minimizes the risk of leakage in the event of damage
- Meets SMACNA’s Leakage Class 3
- Gasket U.L. classified rating (Flame Spread - 0 / Smoke Developed - 0) in accordance with ASTM standard E84 and ANSI / UL 723
- Rolled over edges for easier installation, reduces risk of injury and adds strength
- Adjustability - fittings can be rotated 360° during installation and still maintain the seal's integrity

The Linx Safe self-sealing duct system is based on a U-profile, EPDM rubber gasket. This gasket is located in a groove at the end of the fitting and is securely attached by a stainless steel band. This design ensures that the rubber gasket is always held in the correct position.

When the fitting is inserted into the spiral duct, the gasket folds back forming a seal against the inside of the spiral duct eliminating the need for any duct sealer.

In order to achieve optimum sealing for all diameters, various gasket sizes are used as shown in the table below.

The standard Linx Safe gasket is made from a material resistant to ozone, UV rays, and temperature fluctuations. A silicone gasket for special applications is also available. The standard Linx Safe gasket is rated for temperatures from $-20^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$ (silicone gasket rated for temperatures from $-94^{\circ} \mathrm{F}$ to $+302^{\circ} \mathrm{F}$).

Gasket Connection for diameters less than 26 "

"THE LEADING EDGE" for larger diameter fittings (26 " and greater)

Duct System Leakage Classification

The graph below represents a selected series of leakage classes as defined by the formula $C_{L}=F / P^{0.65}$. The formula defines leakage class as the relationship between leakage rate, duct surface area, and pressure.

Since the calculation of leakage class is based on several relevant factors, leakage class is a comprehensive method of assigning allowable leakage rates. This enables the designer to address all major system factors by simply assigning a leakage class.

Linx Safe meets ASHRAE's Leakage Class 3 requirements without the use of any duct sealants.

$F=$ Leakage rate per unit of duct surface (cfm/100 sq. ft.)
$\mathrm{C}_{\mathrm{L}}=$ Leakage Class
$P=$ Static pressure (iwg)

Linx Safe Assembly Instructions

Preparations For Assembly

- Check that all ductwork to be used in the system is Linx Safe and is undamaged. All Linx Safe fittings must be used with calibrated spiral duct certified by Linx Industries.
- Do not use any ductwork that has been damaged in such a way that it may jeopardize the air tightness or structural strength of the system.
- Store all ductwork in a well organized and weather proof storage area to minimize the risk of damage.
- Cut all spiral duct at right angles and carefully remove any burrs from the cut edges. Installation is easier and the risk of damaging the gasket is reduced if there are no burrs.

Assembly

1. Start by inserting the turned-over edge of the fitting into the spiral duct (figure 1).
2. Check that the first lip of the gasket is in contact with the edge of the spiral duct all the way around and sticks straight out so that the lip is not twisted in one direction or the other.
3. Push the end of the fitting into the spiral duct. Turning the fitting slightly aids insertion. Removal, if necessary, is also aided by turning (figure 2)
4. Secure the fitting in the spiral duct using self-tapping screws or airtight pop rivets. Quantities and sizes to be used are shown in the table below. Do not use more fasteners than specified.
5. Fasteners should be positioned $1 / 2$ inch from the bead stop to prevent damage to the gasket (figure 3).

Spiral Pipe Dia. (in)	Screw Dia. (in)	Quantity
$3-5$	$1 / 8$	2
$6-10$	$1 / 8$	3
$12-24$	$1 / 8$	4
$26-50$	$1 / 8$	6
$52-60$	$1 / 8$	8

6. Placement of the fastening screws should be opposite from one another evenly spaced around the circumference, much like the procedure for tightening lug nuts on a tire. Start where the distance between the spiral duct and the fitting is largest (figure 4).

Carefully seal any holes left by measurements, removed screws, pop rivets, etc.

Rectangular to Round Conversion

bla	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3.8	4.6	5.2	5.7	6.2	6.6	7.0	7.3	7.7	8.0	8.3	8.5	8.8	9.0	9.3	9.5	9.7	9.9	10.1
4	4.4	5.3	6.1	6.7	7.3	7.8	8.3	8.7	9.1	9.5	9.8	10.1	10.4	10.7	11.0	11.3	11.5	11.8	12.0
5	4.9	6.0	6.9	7.	8.3	8.9	9.4	9.9	10.3	10.8	11.2	11.5	11.9	12.2	12.6	12.9	13.2	13.5	13.8
6	5.3	6.6	7.6	8.4	9.1	9.8	10.4	11.	11.5	12.0	12.4	12.8	13.2	13.6	14.0	14.4	14.7	15.0	15.3
7	5.7	7.	8.2	9.1	9.9	10.7	11.3	11.9	12.5	13.0	13.5	14.0	14.5	14.9	15.3	15.7	16.1	16.5	8
8	6.	7.6	8.7	9.8	10	11.	12.2	12.9	13.5	14.1	14.6	15.1	15.6	16.1	16.5	17.0	17.4	17.8	18.2
9	6.4	8.0	9.3	10.4	11.3	12.2	13.0	13.7	14.4	15.0	15.6	16.2	16.7	17.2	17.7	18.2	18.6	19.0	19.5
10	6.7	8.4	9.8	10	12	12	13.7	14.5	15.2	15.	16.5	17	17.7	18.3	18.8	19.3	19.8	20.2	20
11	7.0	8.8	10	11	12	13	14.4	15.3	16	16.	17	18	18.7	19.3	19.8	20.4	20.9	21.4	21.8
12	7.3	9.1	10	12.0	13.1	14.2	15.1	16.0	16.8	17.6	18.3	19.0	19.6	20.2	20.8	21.4	21.9	22.4	22.9
13	7.6	9.5	11	12	13	14	15	16	17	18	19	19.8	20.5	21	21.8	22.4	22.9	23.5	24.0
14	7.8	9.8	11.	12	14.	15.3	16	17.3	18	19.	19	20.6	21.3	22.0	22.7	23.3	23.9	24.5	25
15	8.0	10	11	13	14	15	16	17	18	19.8	20.6	21.4	22.1	22.9	23.5	24.2	24.8	25.4	20
16	8.3	10	12.	13	15	16	17	18	19	20	21	22	22	23.7	24.4	25.1	25.7	26.4	27.0
17	8.5	10	12	14	15	16.8	18	19.1	20.1	21	22.0	22.9	23.7	24.4	25.2	25.9	26.6	27.2	27.
18	8.7	11	12	14	16	17	18	19	20	21.7	22.7	23.5	24.4	25.2	26.0	26.7	27.4	28.1	28
19	8.9	11.2	13.2	14.	16.	17.8	19.0	20.2	21.3	22.3	23.3	24.2	25.1	25.9	26.7	27.5	28.2	28.9	29
20	9.	11	13	15	16	18	19	20	21	22	23	24.9	25.8	6	5	28.3	29.0	29.8	30.5
22	9.	12	14	15	17	19	20	21	22	24	25	26	2	28.0	28.9	29.7	30.5	31.3	32.
24	9.8	12.4	14.	16.	18.3	19.9	21.3	22.7	23.9	25.1	26.2	27.3	28.3	29.3	30.2	31.1	32.0	32.8	33.6
26	10	12	15	17	19	20	22	23	2	26	27.3	28.4	29.5	30.5	31.5	32.4	33.3	34.2	35.1
28	10.4	13.	15	17	19.	21.3	22	24.4	25	27.1	28.3	29.5	30.6	31.7	32.7	33.7	34.6	35.6	36.4
30	10.7	13.	16.	18.3	20.2	22.0	23.7	25.2	26.6	28.0	29.3	30.5	31.7	32.8	33.9	34.9	35.9	36.8	37.
32	11	14	16	18	20	22	24.4	26	27	28.9	30.2	31.5	32.7	33.9	35.0	36.1	37.1	38.1	39.
34	11.3	14.4	17.	19.3	21.4	23.3	25.1	26.7	28.3	29.7	31.1	32.4	33.7	34.9	36.1	37.2	38.2	39.3	40.3
36	11.5	14.7	17.4	19.8	21.9	23.9	25.7	27.4	29.0	30.5	32.0	33.3	34.6	35.9	37.1	38.2	39.4	40.4	41.
38	11.8	15.	17.8	20.2	22.4	24.5	26.4	28	29.8	31.3	32.8	34.2	35.6	36.8	38.1	39.3	40.4	41.5	42.6
40	12.0	15.3	18.2	20.7	22.9	25.0	27.0	28.8	30.5	32.1	33.6	35.1	36.4	37.8	39.0	40.3	41.5	42.6	43.7
42	12.	15.	18.5	21.1	23.4	25.6	27.6	29.4	31.2	32.8	34.4	35.9	37.3	38.7	40.0	41.3	42.5	43.7	44.8
44	12.5	15.9	18.9	21.5	23.9	26.1	28.1	30.0	31.8	33.5	35.1	36.7	38.1	39.5	40.9	42.2	43.5	44.7	45.8
46	12.7	16.2	19.3	21.9	24.4	26.6	28.7	30.6	32.5	34.2	35.9	37.4	38.9	40.4	41.8	43.1	44.4	45.7	46.9

$D_{e}=1.30\left[(a b)^{\left.0.625 /(a+b)^{0.250}\right]}\right.$
$a=$ length of one side of rectangular duct (inch)
$b=$ length of adjacent side of rectangular duct (inch)
$D_{e}=$ round equivalent of rectangular duct for equal friction and capacity (inch)

Example

Convert rectangular duct $22^{\prime \prime} \times 12^{\prime \prime}$ to equivalent round
$a=22, b=12$; from above table
$D_{e}=17.6$, use 18 " diameter

Source: 2017 ASHRAE Fundamentals, p. 21.8

Specifications

MATERIAL (*) not available in pressed construction

- Galvanized steel conforming to ASTM standards A653 and A924
- Stainless steel type 304L conforming to ASTM standard A240*
- Stainless steel type 316L conforming to ASTM standard A240*
- Aluminum 3003-H14 conforming to ASTM standard 8209*

SURFACE FINISH

- Galvanized steel (galvanized in accordance with latest SMACNA HVAC Duct Construction Standards).
- Stainless steel type 304L-2B Mill Finish (\#4 finish available upon request)
- Stainless steel type 316L - 2B Mill Finish (\#4 finish available upon request)
- ProCoat ${ }^{\text {" }}$ (outside only) or ProCoat ${ }^{\text {t" }}$ Plus (inside and outside) on duct and/or fittings
- Standard color = white (additional color options available)
- Average coating thickness of 4 mils (0.004 inch)
- ProCoat ${ }^{\text {mim }}$ to meet or exceed 500 hour Salt Spray Test per ASTM B117
- ProCoat" ${ }^{\text {m }}$ Plus to meet or exceed 3,000 hour Salt Spray Test per ASTM B117
- Antimicrobial - Linx AM ${ }^{\text {TM }}$ is EPA registered for HVAC applications as a water based mircobiostatic formula designed for control growth of microorganisms.

THICKNESS

Material thickness constructed from galvanized steel in accordance with the latest SMACNA's HVAC Duct Construction Standards for +10 " water gauge pressure. Consult factory for negative pressure systems.

CONSTRUCTION

A. Duct is of spiral lock seam construction with a mechanically formed seam locking indentation evenly spaced along the spiral seam. All spiral duct 8" diameter and larger shall incorporate multiple corrugations between spiral seams.
B. Fittings shall be manufactured using one or more of the following construction methods:

- Overlapped edges stitch welded along the entire length of the fitting
- Standing seam gore locked and internally sealed
- Button punched and internally sealed
- Elbows 3 " through 12" diameter will be die stamped and continuously stitch welded.

CONNECTIONS

Fitting ends shall be sized to slip-fit into spiral duct of the same nominal size. Fitting to fitting connections shall be made by use of duct size "CF" couplings. Duct to duct connections require fitting size "CD" couplings.

JOINT SEALING

Fitting ends are equipped with factory installed, double-lipped, U-profile gaskets. When installed in spiral duct per manufacturer's installation instructions, the gasket creates a seal against the interior of the spiral duct. The system tightness shall be factory warranted to meet SMACNA's Leakage Class 3 performance.
If no gasket is used, all joints must be sealed by the installer during the installation process. The type of sealant used as well as the method and level of application should be as directed by the specification and in accordance with the sealant manufacturer's published installation instructions.

GASKET

The gasket shall be EPDM rubber. The gasket is located in a groove at the end of the fitting and securely fastened by means of a stainless steel band. In order to achieve optimum sealing for all diameters, different size gaskets shall be used. The gasket shall be classified by Underwriters Laboratories for flame spread and smoke developed 0 / 0 in accordance with ASTM E84-91a. A silicone gasket meeting the same performance may be offered by duct manufacturer for special applications.

Tolerance, Gauge, \& e-dimensions

Tolerances for Spiral Duct			
$\begin{gathered} 1 \\ \varnothing D \\ 1 \end{gathered}$		8	
$\begin{gathered} \varnothing D \\ \text { (inch) } \end{gathered}$	Ø D Tolerance (inch) min.-max.	$\begin{gathered} \mathbf{t}^{*} \\ \text { (gauge) } \end{gathered}$	$\begin{gathered} \mathbf{t}^{* *} \\ \text { (gauge) } \end{gathered}$
3	2.950-2.969	28	28
4	3.950-3.969	28	28
5	4.950-4.969	28	28
6	5.950-5.969	28	28
7	6.950-6.972	28	28
8	7.950-7.972	28	28
9	8.950-8.972	28	28
10	9.950-9.976	28	28
11	10.950-10.976	28	28
12	11.950-11.976	28	28
14	13.950-13.976	28	28
16	15.936-15.969	26	26
18	17.936-17.969	26	26
20	19.936-19.972	26	26
22	21.936-21.972	26	26
24	23.936-23.976	26	26
26	25.936-25.976	24	24
28	27.934-27.976	24	24
30	29.924-29.969	24	24
32	31.924-31.976	24	24
34	33.924-33.976	24	24
36	35.924-35.988	24	24
38	37.912-37.976	24	24
40	39.912-39.976	24	24
42	41.912-41.976	24	24
44	43.912-43.988	22	22
46	45.912-45.998	22	22
48	47.912-47.988	22	22
50	49.912-49.988	22	22
52	51.913-51.992	22	22
54	53.913-53.992	22	22
56	55.909-55.992	22	22
58	57.909-57.992	22	22
60	59.909-59.992	22	22

Tolerances for Fittings

n accordance with the latest SMACNA HVAC Duct Construction Standards for +10" wg
** Linx Industries Manufacturing Standard
"------" = Not currently available
Length Tolerances

Length - L, H, e, D, d (inch)	Tolerances (inch)
$1-10$	$\pm 3 / 8$
$12-16$	$\pm 5 / 8$
$18-28$	$\pm 3 / 4$
$30-50$	± 1
$52-60$	$\pm 1 \frac{1}{4}$

Weight Tolerance $\pm 10 \%$

Thickness Tolerance
$\pm 10 \%$

Surface/Finish

Stainless steel fittings provided with a 2B mill finish.
Coated products have a minimum surface hardness of 2 H when tested per ASTM D33-63-92A with an average thickness of 4 mils. ProCoat ${ }^{\text {t"M }}$ (OD only) or ProCoat ${ }^{\text {™ }}$ Plus (ID \& OD) coated duct.

Fitting Dimension For Flange Connections
Our products are designed with a male/female slip connections. For Linx
Safe Connections, refer to the e-dimension listed in the chart above

Factory-applied Flange	
Collar Length	Make-up Length
$3^{\prime \prime}$	$3^{\prime \prime}+$ flange thickness

Description
corrugated spiral lock seam duct

- SMACNA RL-1 spiral seam
- evenly spaced integral seam locking feature
- multiple corrugations on all duct 8" - 60" all other diameters available upon request
- standard lengths: 120 " built in accordance with the latest SMACNA HVAC Duct Construction Standard for +10 iwg
- available lengths:

G90 and GN - 12" - 240"
S4 and S6-12" - 240"
AL-12" - 120"

Description non corrugated spiral lock seam duct

- SMACNA RL-1 spiral seam
- evenly spaced integral seam locking feature
- available in diameters 3 "- 60 " all other diameters available upon request
- standard lengths: 120" built in accordance with the latest SMACNA HVAC Duct Construction Standard for +10 iwg
- available lengths:

G90 and GN - 12" - 240"
S4 and S6-12" - 240"
AL-12" - 120"

Description
$1.5^{\prime \prime}$ radius 90° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3 " - 12" note: 11 " diameter is fabricated

Description
$1.5^{\prime \prime}$ radius 90° elbow

- 5-piece gored
- internally sealed
- available in diameters 14" - 48" note: $E 90$ elbows $50^{\prime \prime}$ diameter and larger supplied as two E 45 elbows and a CF coupling

Description
$1.0^{\prime \prime}$ radius 90° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3" - 12" note: 11 " diameter is fabricated

Description
$1.0^{\prime \prime}$ radius 90° elbow

- 4-piece gored
- internally sealed
- available in diameters 14" - 48" note: ER 90 elbows 50" diameter and larger supplied as two ER 45 elbows and a CF coupling

Description
$1.0^{\prime \prime}$ radius 60° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3" - 12" note: 11 " diameter is fabricated

Description
$1.0^{\prime \prime}$ radius 60° elbow

- 3-piece gored
- internally sealed
- available in diameters 14" - 48"

Description
1.5" radius 45° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3" - 12" note: 11 " diameter is fabricated

Description

1.5" radius 45° elbow

- 3-piece gored
- internally sealed
- available in diameters 14" - 48"

Description
1.0" radius 45° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3" - 12" note: 11 " diameter is fabricated

Description

$1.0^{\prime \prime}$ radius 45° elbow

- 3-piece gored
- internally sealed
- available in diameters 14" - 48"

$$
r_{C}=1 x d 1
$$

Order Example

Description
$1.0^{\prime \prime}$ radius 30° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3 " - 12" note: 11 " diameter is fabricated

Description

$1.0^{\prime \prime}$ radius 30° elbow

- 2-piece gored
- internally sealed
- available in diameters 14" - 48"

$$
r_{\mathrm{C}}=1 \mathrm{xd} 1
$$

Description
1.0 " radius 15° elbow

- die stamped
- continuous stitch welded
- rolled edges
- galvanized steel only
- available in diameters 3" - 12" note: 11 " diameter is fabricated

Description
1.0" radius 15° elbow

- 2-piece gored
- internally sealed
- available in diameters 14" - 48"

Description
mitered elbow

- rolled edge
- 2" standard throat length
- available in diameters 4"- 60"

Description

mitered elbow with vanes

- rolled edge
- 2" standard throat length
- turning vanes evenly spaced
- available in diameters 4"- 60"
number of vanes vary by diameter
- $\varnothing 4$ "-10" = 2 vanes
- Ø 12"-14" = 3 vanes
- Ø 16"-20" = 4 vanes
- Ø 22"-60" = 5 vanes

Description
concentric reducer

- galvanized construction only

Dimension (die stamped)

Ød1	Ød2	L
inch	inch	inch
4	3	3/4
5	3	1
5	4	7/8
6	3	$13 / 4$
6	4	11/4
6	5	3/4
7	4	2
7	5	11/2
7	6	1
8	4	21/4
8	5	15/8
8	6	11/4
8	7	3/4
9	7	21/8
9	8	11/8
10	6	21/4
10	7	1\%
10	8	11/8
10	9	5/8
12	8	21/8
12	10	13/8
14	10	2
14	12	13/8

Description
concentric reducer

- $\varnothing D=$ duct size slips over fitting end
- galvanized construction only

Dimension (die stamped)

Ød1	$\emptyset \mathrm{d} 2$	L
inch	inch	inch
4	3	23/8
5	3	25/8
5	4	23/8
6	3	3/8
6	4	27/8
6	5	23/8
7	4	$31 / 2$
7	5	3
7	6	$21 / 2$
8	4	$33 / 4$
8	5	$31 / 4$
8	6	27/8
8	7	23/8
9	7	3/4
9	8	23/4
10	6	43/8
10	7	31/4
10	8	23/4
10	9	21/4
12	10	23/4
14	10	43/4
14	12	3/8

Description
fabricated concentric reducer

- $\mathrm{L} 1=(\varnothing \mathrm{d} 1-\varnothing \mathrm{d} 2)^{*}$
(*) minimum 4"

Description
fabricated concentric reducer

- ØD end slips onto fitting end
- L1 = (ØD - Ød2)* + e dimension (page 11) (*) minimum 4"

Description
fabricated eccentric reducer

- $\mathrm{L} 1=(Ø \mathrm{~d} 1-Ø \mathrm{~d} 2)^{*}$
(*) minimum 4"

- $1=(\varnothing \mathrm{d} 1-\varnothing \mathrm{d} 2)^{*}$

Description
fabricated eccentric reducer

- ØD end slips onto fitting end
- L1 = (ØD - Ød2)* + e dimension (page 11) (*) minimum 4"

Description
45° combination boot-style saddle tap

Dimensions

If $\varnothing \mathrm{d} 3 \leq 8$ ", $\mathrm{H}=4$ "
If $\varnothing d 3=9 "-14 ", \mathrm{H}=7$ "
If $\varnothing d 3=15 "-26 ", \mathrm{H}=10$ "
If $\varnothing d 3=27^{\prime \prime}-46 ", \mathrm{H}=13$ "
If $\varnothing d 3=47 "-60 ", H=16 "$

Description
pressed saddle tap

- radius entry
- limited to galvanized steel only
- available in Ød3 or tap diameters 3"-16", exceptions listed below

Description
fabricated saddle tap

- sizes listed below
- $X=1$ "

	Pressed Saddle Taps - Ød3 (inch)										
$\varnothing \mathrm{D}$ (inch)	3	4	5	6	7	8	9	10	12	14	16
4	X	X									
5	X	X	x								
6	X	X	X	X							
7	X	x	x	x	x						
8		x	x	x	X	X					
9		X	X	X		X	X				
10		x	X	X		X	X	X			
12		X	X	X		X	X	X	X		
14		x	x	x		X	x	x	X		
16		x	x	x		X	X	X	X		x
18		X	X	X		X	X	x	X		X
20		X	x	x		X	X	X	X		x
22			X	X		X	X	X	X		X
24			X	X		X	X	X			X

Order Example

Smart Part Number: U3PS7

Description
fabricated 45° lateral tap for round

- H = 2.5"
- special order: $15^{\circ}, 30^{\circ}, 60^{\circ}$ i.e. for a 15° U12PV1520

Description
conical saddle tap

- $\mathrm{H}=6{ }^{\prime \prime}$
- L = Ød 3 + 2"

Description
fabricated 45° lateral tap for flat surface

- $\mathrm{H}=2.5^{\prime \prime}$
- special order: $15^{\circ}, 30^{\circ}, 60^{\circ}$ i.e. for a $15^{\circ} \mathrm{U} 12 \mathrm{PVF} 1520$

Description
conical tap for flat surface

- H = 6"

L = Ød $3+2$ "

- flat lip $=3 / 8$ "- $5 / 8$ " depending on diameter

Description
bullhead tee

- L = Ød1 + 6"

TBHV (with turning vanes) shown below.

Description
45° boot-style tee

- assembled with PB tap
- Ød3 \leq Ød1 diameter
- L2 = Ød3 + H2 + 4"
- If Ød3 ≤ 8 ", $\mathrm{H} 2=4$ ",

If $\emptyset d 3=9-144^{\prime \prime}, \mathrm{H} 2=7$ ",
If Ød3 = 15-26", H2 = 10",
If Ød3 = 27-46", H2 = 13", and
If $\varnothing d 3=47-60 ", H 2=16 "$

Description
45° boot-style tee with reducer

- assembled with PB tap
- Ød3 \leq Ød1 diameter
- L2 = (Ød3 + H2 + 4") $+(\text { (} \mathrm{d} 1-\varnothing \mathrm{d} 2)^{\star}$
- If Ød3 ≤ 8 ", H2 = 4",

If Ød3 $=9-14^{\prime \prime}, \mathrm{H} 2=7$ ",
If $\varnothing \mathrm{d} 3=15-26$ ", $\mathrm{H} 2=10$ ",
If Ød3 = 27-46", H2 = 13", and
If $\varnothing d 3=47-60 ", H 2=16 "$
(*) minimum of 4 "

Smart Part Number: U22TRB1612

Description
45° boot-style crossing tee

- assembled with PB taps
- Ød3 and Ød4 $\leq \varnothing \mathrm{d} 1$ diameter Ød3 \geq Ød4
- $\mathrm{L}=\varnothing \mathrm{d} 3+\mathrm{H} 2+4{ }^{\prime \prime}$
- If $\varnothing \mathrm{d} 3 \leq 8$ ", H 2 = 4",

If $\varnothing \mathrm{d} 3=9-14 ", \mathrm{H} 2=7$ ",
If Ød3 = 15-26", H2 = 10",
If $\varnothing d 3=27-46$ ", H2 = 13", and
If $\varnothing d 3=47-60 ", H 2=16 "$

Description
45° boot-style crossing tee with reducer

- assembled with PB taps
- Ød3 and Ød4 \leq Ød1 diameter Ød3 \geq Ød4
- $L=(Ø d 3+H 2+4 ")+(Ø d 1-\varnothing d 2)^{*}$
- If $\varnothing d 3 \leq 8 " H 2=4$ ",

If $\varnothing \mathrm{d} 3=9-14 ", \mathrm{H} 2=7$ ",
If $\varnothing d 3=15-26 "$, H2 = 10",
If $\varnothing \mathrm{d} 3=27-46$ ", $\mathrm{H} 2=13$ ", and
If $\varnothing d 3=47-60 ", H 2=16 "$
(*) minimum of 4"

Description
conical tee

- L = Ød3 + 8"
- $\mathrm{H}=6{ }^{\prime \prime}$
- Ød1 must be 2" or larger than Ød3

Description
conical reducing tee

- $L=(\varnothing d 3+8 ")+(Ø d 1-\varnothing d 2)^{*}$
- H = 6"
- Ød1 must be 2" or larger than Ød3
(*) minimum of 4"

Description
conical crossing tee

- L = Ød3 + 8"
- H = 6"
- Ød1 must be 2" or larger than Ød3
- $\varnothing \mathrm{d} 3 \geq \varnothing \mathrm{d} 4$

Description
conical reducing crossing tee

- $L=(\varnothing d 3+8 ")+(Ø d 1-\varnothing d 2)^{*}$
- H = 6"
- Ød1 must be 2" or larger than Ød3
- Ød3 \geq Ød4
(*) minimum of 4"

Tees

Description
assembled tee with die-stamped or fabricated PS

- L = Ød3 + 6"

Description
assembled reducing tee with die-stamped or fabricated PS

- $L=(Ø d 3+6 ")+(Ø d 1-Ø d 2)^{*}$
(*) minimum of 4"

Description
assembled crossing tee with die-stamped or fabricated PS

- $\varnothing \mathrm{d} 3 \geq \varnothing \mathrm{d} 4$
- $L=\varnothing d 3+6 "$

Tees

Description
45° lateral tee

- L = Ød3[1/sin(45)] + 4"
- H = 2.5" (constant)(throat height)
- special order: $15^{\circ}-30^{\circ}-60^{\circ}$ i.e. U-Ød1-TV15-Ød3

Description
45° lateral reducing tee

- L = Ød3 [1/sin(45)] + 4"+ (Ød1 - Ød2)*
- H = 2.5" (constant) (throat height)
(*) minimum of 4

Crossing Tees

Description
45° lateral crossing tee

- dimension data for Ød4 = Ød3 only $L=(1.414 \times \varnothing d 3)+4 "$
- $\mathrm{H}=2.5^{\prime \prime}$ (constant throat height) Ød3 \geq Ød4
- special order: $15^{\circ}-30^{\circ}-60^{\circ}$
i.e. XV $15^{\circ}-\mathrm{aa}-\mathrm{bb}-\mathrm{cc}$

Description
45° lateral reducing crossing tee

- dimension data for $\varnothing \mathrm{d} 4=\varnothing \mathrm{d} 3$ only $\mathrm{L}=(1.414 \times \varnothing \mathrm{d} 3)+4 "+(\varnothing \mathrm{d} 1-\varnothing \mathrm{d} 2)^{*}$
- $\mathrm{H}=2.5^{\prime \prime}$ (constant throat height)
- $\varnothing d 3 \geq \varnothing d 4$
(*) minimum of 4"

Description
directional split fitting: 45°

- special order: $15^{\circ}, 30^{\circ}, 60^{\circ}$
i.e. $\mathrm{Y} 15^{\circ}-\mathrm{aa}-\mathrm{bb}-\mathrm{cc}$
- special order: Ød3 or Ød4 < Ød1
- special order: $\varnothing d 3 \leq \varnothing d 4$

Dimensions

$$
\begin{aligned}
& \mathrm{H} 1=[(Ø \mathrm{~d} 3 \times 0.5)+(Ø \mathrm{~d} 1 \times 0.9)] \times(Ø \mathrm{~d} 3 \times 0.5) \\
& \mathrm{O} 1=[(Ø \mathrm{~d} 3 \times 0.5)+(Ø \mathrm{~d} 1 \times 0.8)] \times(Ø \mathrm{~d} 1 \times 0.5) \\
& \mathrm{H} 2=[(\varnothing \mathrm{d} 4 \times 0.5)+(\varnothing \mathrm{d} 1 \times 0.9)] \times(\varnothing \mathrm{d} 4 \times 0.5) \\
& \mathrm{O} 2=[(Ø \mathrm{~d} 4 \times 0.5)+(\varnothing \mathrm{d} 1 \times 0.8)] \times(\varnothing \mathrm{d} 1 \times 0.5) \\
& \mathrm{M} 1=\mathrm{H} 1+(Ø \mathrm{~d} 3 \times 0.5) 0.707-(Ø \mathrm{~d} 1 \times 0.5)+\mathrm{O} 1-(Ø \mathrm{~d} 3 \times 0.5) 0.707 \\
& \mathrm{M} 2=\mathrm{H} 2+(Ø \mathrm{~d} 4 \times 0.5) 0.707-(Ø \mathrm{~d} 1 \times 0.5)+\mathrm{O} 2-(Ø \mathrm{~d} 4 \times 0.5) 0.707 \\
& \text { CL1 }=[(Ø \mathrm{~d} 1 \times 0.5)+01-(\varnothing \mathrm{d} 3 \times 0.5) 0.707] / 0.707 \\
& \text { CL2 }=[(\varnothing \mathrm{d} 1 \times 0.5)+\mathrm{O} 2-(Ø \mathrm{~d} 4 \times 0.5) 0.707] / 0.707
\end{aligned}
$$

Note: These dimensions apply for 45° only. Please call for dimensions on special orders.

Description
one-piece offset

- $\mathrm{L}_{\text {min }}=\left[\frac{Ø \mathrm{~d}_{1}}{4}\right]+\left[\frac{\mathrm{Z}_{1}}{0.577}\right]+4$
- $L_{\text {max }}=60 "$

Note: SMACNA recommends that offsets be 60° or less

Couplings

Description
coupling used for joining spiral duct

- If Ø 3"-20", L = 3/8",

If Ø 22"-26", L = ½"
If $\varnothing 28 "-60 ", L=5 / 8 "$

Description coupling for joining fittings

- If Ø 3"-9", L = 35/8",

If Ø 10"-14", L = 51⁄", If Ø 16 "-26", $L=65 / 8^{\prime \prime}$, If $\varnothing 28 "-38 ", L=858^{\prime \prime}$, If $\varnothing 40 "-60 ", L=101 / 8 "$

End Caps

Description
end cap for spiral duct

- If Ø 3"-20", L = 3/8",

If $\varnothing 22 "-26 ", L=1 ⁄ 2 "$
If $\varnothing 28 "-60 ", L=5 / 8 "$

Description end cap for fittings

- If Ø 3"-9", L = 15\%",

If Ø 10"-14", L = 238", If Ø 16 "-26", $L=31 / 8$ ", If Ø 28"-38", L = 4", If Ø 40"-60", L = 43/4"

Description
take-off/starting collar

- installed on flat side of duct or plenum
- available in diameters 3"- 60"
arling collar

Description stamped radiused bellmouth take-off

- available in 4"-16" (not including 11")
- installed on flat side of duct or plenum

DS

Description

manual balancing damper w/ full blade

- for use in systems where a complete shutoff of air flow is not required
- gasketed shaft-mounted load bearing bushing to minimize air leakage
- integral shaft-blade assembly
- 2" sheet metal insulation stand-off
- damper cup height = 2 "
- locking blade quadrant w/damper position indicator
- full fitting body assembly with bead stop

Note:

- Ød1 > 14" equipped with extended handle and a reinforced damper blade
- Ød1 > 24" provided with 2" bracket standoff

Dimension

$\boldsymbol{\sigma} 11$	$' L '$	Shaft
inch	inch	inch \mathbf{x} inch
$\mathbf{4}$	3.9	$5 / 16^{*}$
$\mathbf{5}$	3.9	$5 / 16^{*}$
$\mathbf{6}$	3.9	$5 / 16^{*}$
$\mathbf{7}$	3.9	$5 / 16^{*}$
$\mathbf{8}$	3.9	$5 / 16^{*}$
$\mathbf{9}$	3.9	$5 / 16^{*}$
$\mathbf{1 0}$	3.5	$5 / 16^{*}$
$\mathbf{1 2}$	3.5	$5 / 16^{*}$
$\mathbf{1 4}$	3.5	$5 / 16^{*}$
$\mathbf{1 6}$	3.75	$5 / 16^{*}$
$\mathbf{1 8}$	3.75	$5 / 16^{*}$
$\mathbf{2 0}$	3.75	$5 / 16^{*}$
$\mathbf{2 2}$	3.75	$5 / 16^{*}$
$\mathbf{2 4}$	3.75	$5 / 16^{*}$
$\mathbf{2 6}$	3.75	$5 / 16^{*}$
$\mathbf{2 8}$	3.75	$5 / 16^{*}$
$\mathbf{3 0}$	3.75	$5 / 16^{*}$
$\mathbf{3 2}$	10.4	$1^{* *}$
$\mathbf{3 4}$	10.4	$1^{* *}$
$\mathbf{3 6}$	10.4	$1^{* *}$

* 2" shaft extensions available
** 1" square tube shaft

Description
gasketed take-off with damper

- lengths (in):
diameters 4" - 9" : L= 5½"
diameters 10" - 14" : L= 5 5/8"
diameters 16" - 24" : L= 63/8"
- \quad shaft $=5 / 16$ " $\times 5 / 16$ "
- 2" shaft extension available

Dampers

Description
damper (DS) with saddle tap (PS) base

- shaft $=5 / 16 " \times 5 / 16$ "
- 2 " shaft extensions available

Available in the following sizes (\checkmark) :

Available Sizes											
Ød	Ød3										
	3	4	5	6	7	8	9	10	12	14	16
4	\checkmark	\checkmark									
5	\checkmark	\checkmark	\checkmark								
6	\checkmark	\checkmark	\checkmark	\checkmark							
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
8		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
9		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
10		\checkmark									
12		\checkmark									
14		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
16		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
18		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
20		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
22		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
24		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Dampers

Description
balancing damper with a gasketed blade for complete air-flow shut-off

- gasketed shaft-mounted load bearing bushing to minimize air leakage
- integral shaft-blade assembly
- 2" sheet metal insulation stand-off
- locking blade quadrant w/damper position indicator
- full fitting body assembly with bead stop
- shaft $=5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime}$
- damper cup height = 2 "
- 2" shaft extension available
- available in stainless steel Ø4"-12"

Note: dampers with Ød1 > 24" have 2" bracket in place of cup-shaped stand-off.

Dimension
Length (L) in inches by diameter:
4"-9", L = 3.9" 10"-14", L = 3.5" 16"-24", L = 3.75"

Square-to-Round

Description
square to round transition

- available in Ø 4"- 60"
- 2" raw edge rectangular end
- L = length
minimum = 12"
max = 60"
- a = rectangular width
- $b=$ rectangular height
- special order: offset styles available

Linx Industries, Inc.
2600 Airline Boulevard
Portsmouth, Virginia 23701
Phone: 800.797.7476
Fax: 757.488.4502
www.li-hvac.com

REV08.2021

